La distribución binomial implica una variable aleatoria discreta. Las probabilidades en un ajuste binomial se pueden calcular de manera directa utilizando la fórmula para un coeficiente binomial. Si bien en teoría, este es un cálculo fácil, en la práctica puede volverse bastante tedioso o incluso computacionalmente imposible calcular las probabilidades binomiales. Estos problemas pueden ser eludidos utilizando una distribución normal para aproximar una distribución binomial.& amp; amp; nbsp; veremos cómo hacer esto siguiendo los pasos de un cálculo.
Pasos para usar la aproximación normal
Primero, debemos determinar si es apropiado usar la aproximación normal. No todas las distribuciones binomiales son iguales. Algunos exhiben suficiente asqueidad como para que no podamos usar una aproximación normal. Para verificar si se debe usar la aproximación normal, debemos observar el valor de p , que es la probabilidad de éxito, y n , que es el número de observaciones de nuestra variable binomial.
Video destacado
Para utilizar la aproximación normal, consideramos tanto np como n (1 – p ). Si ambos números son mayores o iguales a 10, entonces estamos justificados al usar la aproximación normal. Esta es una regla general, y típicamente cuanto mayores sean los valores de np y n (1 – p ), mejor es la aproximación.
Comparación entre binomio y normal
Compararemos una probabilidad binomial exacta con la obtenida por una aproximación normal. Consideramos la lanzamiento de 20 monedas y queremos saber la probabilidad de que cinco monedas o menos sean cabezas. Si X es el número de cabezas, entonces queremos encontrar el valor:
P ( X = 0) + P ( X = 1) + P ( X = 2) + P ( X (tix.
El uso de la fórmula binomial para cada una de estas seis probabilidades nos muestra que la probabilidad es del 2.0695%. Ahora veremos qué tan cerca estará nuestra aproximación normal a este valor.
Al verificar las condiciones, vemos que tanto np como np (1 – p ) son iguales a 10. Esto muestra que podemos usar la aproximación normal en este caso. Utilizaremos una distribución normal con media de np = 20 (0.5) = 10 y una desviación estándar de (20 (0.5) (0.5)) 0.5 = 2.236.
Para determinar la probabilidad de que X sea menor o igual a 5, necesitamos encontrar la puntuación z z para 5 en la distribución normal que estamos usando. Así z = (5 & amp; # x2013; 10) /2.236 = -2.236. Al consultar una tabla de z -scores, vemos que la probabilidad de que z sea menor o igual a -2.236 es 1.267%. Esto difiere de la probabilidad real pero está dentro del 0.8%.
Factor de corrección de continuidad
Para mejorar nuestra estimación, es apropiado introducir un factor de corrección de continuidad. Esto se usa porque una distribución normal es continua mientras que la distribución binomial es discreta. Para una variable aleatoria binomial, un histograma de probabilidad para X = 5 incluirá una barra que va de 4.5 a 5.5 y está centrada en 5.
Esto significa que para el ejemplo anterior, la probabilidad de que X es menor o igual a 5 para una variable binomial debe estimarse por la probabilidad de que X es menor o igual a 5.5 para una variable normal continua. Así z = (5.5 & amp; # x2013; 10) / 2.236 = -2.013. La probabilidad de que z
& amp; # x203A; Matemáticas